The response of surface ozone to climate change over the Eastern United States
نویسندگان
چکیده
We investigate the response of surface ozone (O3) to future climate change in the eastern United States by performing simulations corresponding to present (1990s) and future (2050s) climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050s decade. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive emissions were allowed to vary with the simulated climate. The severity and frequency of O3 episodes in the eastern U.S. increased due to future climate change, primarily as a result of increased O3 chemical production. The 95th percentile O3 mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80– 90 ppbv range; the US EPA’s current 8-h ozone primary standard is 80 ppbv. The increased O3 chemical production is due to increases in: 1) natural isoprene emissions; 2) hydroperoxy radical concentrations resulting from increased water vapor concentrations; and, 3) NOx concentrations resulting from reduced PAN. The most substantial and statistically significant (p<0.05) increases in episode frequency occurred over the southeast and midatlantic U.S., largely as a result of 20% higher annual-average natural isoprene emissions. These results suggest a lengthening of the O3 season over the eastern U.S. in a future climate to include late spring and early fall months. Increased chemical production and shorter average lifetime are two consistent features of the seasonal response of surface O3, with increased dry deposition loss rates contributing most to the reduced lifetime in all seasons except summer. Significant interannual variability is observed in the frequency of O3 episodes and we find that it is necessary to utilize 5 years or more of simulation data Correspondence to: P. N. Racherla ([email protected]) in order to separate the effects of interannual variability and climate change on O3 episodes in the eastern United States.
منابع مشابه
Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45 N, and we show that those regions are most influenced by the...
متن کاملSeasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns.
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as...
متن کاملLinking global to regional models to assess future climate impacts on surface ozone levels in the United States
[1] We investigate the impact of climate change on future air quality in the United States with a coupled global/regional scale modeling system. Regional climate model scenarios developed by dynamically downscaling outputs from the GISS GCM are used by CMAQ to simulate present air pollution climatology, and modeled surface ozone mixing ratios are compared with recent observations. Though the mo...
متن کاملEffects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States
[1] We use a global chemical transport model (GEOS-Chem) driven by a general circulation model (NASA Goddard Institute for Space Studies GCM) to investigate the effects of 2000–2050 global change in climate and emissions (the Intergovernmental Panel on Climate Change A1B scenario) on the global tropospheric ozone budget and on the policy-relevant background (PRB) ozone in the United States. The...
متن کاملImpacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology
[1] The effects of climate change on ozone and PM 2.5 concentrations over the eastern United States were investigated using the Global-Regional Coupled Air Pollution modeling System (GRE-CAPS). GRE-CAPS consists of the Goddard Institute for Space Studies (GISS) II' general circulation model with aerosol processes and ozone chemistry, the fifth-generation PSU/NCAR mesoscale model (MM5) regional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008